博客
关于我
2019牛客网暑期多校赛第七场B题--Irreducible Polynomial--多项式可分解判别
阅读量:741 次
发布时间:2019-03-21

本文共 151 字,大约阅读时间需要 1 分钟。

判断多项式是否不可分解的关键在于其次数和二次项情况。具体规则如下:

  • 如果多项式的次数n大于2,则无法直接判断一定能分解,但根据问题描述,当n>2或n=2且判别式大于等于0时,可以确定多项式可分解。

  • 因此,编写程序时,当n≥2且判别式满足条件时,返回No;否则返回Yes。

  • 最终,代码实现了这个判断逻辑。

    转载地址:http://zyvgz.baihongyu.com/

    你可能感兴趣的文章
    Objective-C实现LFU缓存算法(附完整源码)
    查看>>
    Objective-C实现linear algebra线性代数算法(附完整源码)
    查看>>
    Objective-C实现linear congruential generator线性同余发生器算法(附完整源码)
    查看>>
    Objective-C实现linear discriminant analysis线性判别分析算法(附完整源码)
    查看>>
    Objective-C实现linear regression线性回归算法(附完整源码)
    查看>>
    Objective-C实现linear search线性搜索算法(附完整源码)
    查看>>
    Objective-C实现Linear search线性搜索算法(附完整源码)
    查看>>
    Objective-C实现LinearSieve线性素数筛选算法 (附完整源码)
    查看>>
    Objective-C实现LinkedListNode链表节点类算法(附完整源码)
    查看>>
    Objective-C实现LinkedList链表算法(附完整源码)
    查看>>
    Objective-C实现local weighted learning局部加权学习算法(附完整源码)
    查看>>
    Objective-C实现logistic regression逻辑回归算法(附完整源码)
    查看>>
    Objective-C实现logistic sigmoid函数(附完整源码)
    查看>>
    Objective-C实现longest Common Substring最长公共子串算法(附完整源码)
    查看>>
    Objective-C实现longest increasing subsequence最长递增子序列算法(附完整源码)
    查看>>
    Objective-C实现longestCommonSubsequence最长公共子序列算法(附完整源码)
    查看>>
    Objective-C实现LongestIncreasingSubsequence最长递增子序列算法(附完整源码)
    查看>>
    Objective-C实现lorenz transformation 洛伦兹变换算法(附完整源码)
    查看>>
    Objective-C实现Lower-Upper Decomposition上下分解算法(附完整源码)
    查看>>
    Objective-C实现LowerCaseConversion小写转换算法(附完整源码)
    查看>>