博客
关于我
2019牛客网暑期多校赛第七场B题--Irreducible Polynomial--多项式可分解判别
阅读量:741 次
发布时间:2019-03-21

本文共 151 字,大约阅读时间需要 1 分钟。

判断多项式是否不可分解的关键在于其次数和二次项情况。具体规则如下:

  • 如果多项式的次数n大于2,则无法直接判断一定能分解,但根据问题描述,当n>2或n=2且判别式大于等于0时,可以确定多项式可分解。

  • 因此,编写程序时,当n≥2且判别式满足条件时,返回No;否则返回Yes。

  • 最终,代码实现了这个判断逻辑。

    转载地址:http://zyvgz.baihongyu.com/

    你可能感兴趣的文章
    Nagios介绍
    查看>>
    nagios利用NSCient监控远程window主机
    查看>>
    nagios安装文档
    查看>>
    nagios服务端安装
    查看>>
    Nagios自定义监控脚本
    查看>>
    name_save matlab
    查看>>
    Nami 项目使用教程
    查看>>
    Nancy之基于Nancy.Hosting.Aspnet的小Demo
    查看>>
    NAND NOR FLASH闪存产品概述
    查看>>
    nano 编辑
    查看>>
    nanoGPT 教程:从零开始训练语言模型
    查看>>
    NASA网站曝严重漏洞,或将沦为黑客钓鱼网站?
    查看>>
    Nash:轻量级、安全且可靠的脚本语言
    查看>>
    NAS、SAN和DAS的区别
    查看>>
    NAS个人云存储服务器搭建
    查看>>
    NAS服务器有哪些优势
    查看>>
    NAT PAT故障排除实战指南:从原理到技巧的深度探索
    查看>>
    nat 网卡间数据包转发_你是不是从来没有了解过光纤网卡,它跟普通网卡有什么区别?...
    查看>>
    NAT-DDNS内网穿透技术,快解析DDNS的优势
    查看>>
    NAT-DDNS内网穿透技术,快解析DDNS的优势
    查看>>